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Stochastic Process
(Random Process)

 A stochastic process {X(t): t є T} is a family of random variables indexed by a 
parameter t, which runs over an index set T.

 The parameter t usually denotes time

 For any specific time t, X(t) is a random variable.

 The index set T is called the parameter set. 

 If T is countable, {X(t)} is discrete time stochastic process. If T is an interval, 
finite or infinite, {X(t)} is said to be continuous time stochastic process.

 The set of possible values of X(t) at any time t is called the state space, S.
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Stochastic Process
(Random Process)

Example: Suppose that, a business office has five telephone lines and that any 
number of these lines may be in use at any time, the telephone lines are observed 
at regular interval of 2 minutes.

X: Number of lines in use in every 2 minutes

Then for T=0, 1, 2, 3, …, 

X(t): {X(0), X(1), X(2), …} e.g. X(t): {3, 2, 5, 0, 1, 0, 3, …}

Here, {X(t): t є T} is a stochastic process with parameter space, T= {0, 1, 2, 3, …} 
and State space, S= {X: 0, 1, 2, 3, 4, 5}
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Stochastic Process
(Random Process)

An observation of this process might be one like below-
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Stochastic Process
(Random Process)

Examples of some stochastic processes:

1. Random walk model:

Let, Xt is a random variable that can be any of the two states [up (+1) or down (-1)] at time t.

Then, the process 𝑅
𝑡
= 𝑅

𝑡
−
1
+ 𝑋

𝑡
is called a random walk model

2. Counting process

A stochastic process 𝑁 𝑡 ; 𝑡 > 0 is a counting process if N(t) represents the total number of 
events that have occurred in time t.

3. Birth & death process

A stochastic process 𝑁 𝑡 ; 𝑡 ≥ 0 with states 𝑛 = 0,1,2, … for which transition from state n 
may go only to either of the states (n-1) or (n+1) is a birth and death process.
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Autocorrelation
(serial correlation)

 In statistics, the autocorrelation of a random process describes the 
correlation between values of the process at different times, as a function 
of the two times or of the time lag. 

 Let X be some repeatable process, and i be some point in time after the 
start of that process. Then Xi is the value (or realization) produced by a 
given run of the process at time i. Suppose that the process is further 
known to have defined values for mean μi and variance σi

2 for all times i. 
Then the definition of the autocorrelation between times s and t is-

𝑅 𝑠, 𝑡 =
𝐸 𝑋𝑡 − 𝜇𝑡 𝑋𝑠 − 𝜇𝑠

𝜎𝑡𝜎𝑠
= 𝐶𝑜𝑟𝑟 𝑋𝑡 , 𝑋𝑠
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Markov Process

 Consider a finite or countably infinite set of points (t0,, t1, …, tn, t), where 
t0<t1<…<tn<t and t, ti є T (i= 0, 1, 2, …, n); T is a parameter space of the 
process {x(t)}.

 The dependence exhibited by the process {X(t): t є T} is called Markovian 
dependence if the conditional distribution of X(t) for a given value of X(t1), 
X(t2), … X(tn) depends only on X(tn), which is the most recent known value of 
the process, i.e., if 

𝑃 𝑋 𝑡 = 𝑥| 𝑥 𝑡𝑛 = 𝑥𝑛, 𝑋 𝑡𝑛−1 = 𝑥𝑛−1, … , 𝑋 𝑡0 = 𝑥0
= 𝑃 𝑋 𝑡 = 𝑥| 𝑥 𝑡𝑛 = 𝑥𝑛

The stochastic process exhibiting the property (Markov property) is called a 
Markov process.

7



Markov Process

Different types of Markov process

Parameter space

State space

Discrete Continuous

Discrete Markov Chain Discrete parameter,
continuous MP

continuous Continuous parameter, 
discrete MC

Continuous parameter, 
continuous MP
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Notations:
𝑝𝑖 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑖𝑠 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑖

𝑝𝑖𝑗
𝑛
= 𝑛 − 𝑠𝑡𝑒𝑝 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒 𝑗 𝑓𝑜𝑟𝑚 𝑠𝑡𝑎𝑡𝑒 𝑖

= 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑤𝑖𝑙𝑙 𝑚𝑜𝑣𝑒 𝑓𝑟𝑜𝑚 𝑠𝑡𝑎𝑡𝑒 𝑖 𝑡𝑜 𝑠𝑡𝑎𝑡𝑒 𝑗 𝑖𝑛 𝑛 − 𝑠𝑡𝑒𝑝𝑠



Markov Process 9

Transition Probability Matrix (TPM):

A matrix containing probabilities of transition from one state to another. If there 
are k finite states of a Markov process, i.e. S={1, 2, … k}, then one-step transition 
probability matrix-

𝑃 =

1 2 ⋯ 𝑘
1
2
⋮
𝑘

𝑃11 𝑃12
𝑃21 𝑃22

⋯ 𝑃1𝑘
⋯ 𝑃2𝑘

⋮ ⋮
𝑃𝑘1 𝑃𝑘2

⋱ ⋮
⋯ 𝑃𝑘𝑘

Such that, 𝑖) 𝑃𝑖𝑗 ≥ 0, ∀𝑖, 𝑗 ∈ 𝑆; 𝑖𝑖) σ𝑗 𝑃𝑖𝑗 = 1 (𝑟𝑜𝑤 𝑡𝑜𝑡𝑎𝑙 1)



Markov Process
(Example)
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Example 1:

X= Living status. State space, S= {1, 2, 3}; where, 1= Healthy, 2= Sick, 3 = Dead.

𝑃 =

1 2 3
1
2
3

𝑃11 𝑃12 𝑃13
𝑃21 𝑃22 𝑃23
𝑃31 𝑃32 𝑃33

Here, 𝑃11 > 0, 𝑃12 > 0, 𝑃13 > 0, 𝑃21 > 0, 𝑃22 > 0, 𝑃23 > 0,
𝑃31 = 0, 𝑃32 = 0, 𝑃33 = 1

2
3

1

P11

P22

P33

P13

P21

P12

P31

P23

P32



Markov Process

Time-homogeneous Markov chains (or stationary Markov chains) are processes 
where

𝑃 𝑋𝑡+1 = 𝑥| 𝑋𝑡 = 𝑦 = 𝑃 𝑋𝑡 = 𝑥| 𝑋𝑡−1 = 𝑦

for all t. The probability of the transition is independent of t.
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Markov Process

Classification of states:

 Accessible state: A state j is said to be accessible from a state i (written i→ j) if 
a system started in state i has a non-zero probability (𝑃𝑖𝑗 > 0) of transitioning 

into state j at some point.

 Communicating states: A state i is said to communicate with state j (written i
↔ j) if both i→ j and j → i.

 Absorbing state: A state i is called absorbing if it is impossible to leave this 
state. Therefore, the state i is absorbing if and only if 𝑝𝑖𝑖 = 1 𝑎𝑛𝑑 𝑝𝑖𝑗 =

0 𝑓𝑜𝑟 𝑖 ≠ 𝑗
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Markov Process

Classification of states:

 Transient state & recurrent state: A state i is said to be transient if, given that 
we start in state i, there is a non-zero probability that we will never return to I 
(the process may not return to state i). State i is recurrent (or persistent) if it is 
not transient. Recurrent states are guaranteed (with probability 1) to have a 
finite hitting time.

 Periodic state & aperiodic state: A state i has period k if any return to state i
must occur in multiples of k time steps. A state is said to be aperiodic if returns 
to state i can occur at irregular times (k=1).
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Markov Process
(Example)

Example 2: There are two telephone lines in a office and any number of these 
lines may be in use at any given time. During a certain point of time, telephone 
lines are observed at regular interval of 2 minutes. The initial probability vector of 
the states is-

𝐴1×𝐾 = 0.3, 0.5, 0.2

And one-step transition probability matrix is-

𝑃𝐾×𝐾 =
0.2 0.6 0.2
0.3 0.5 0.2
0.1 0.4 0.5

Assuming, a homogenous Markov chain, determine that probabilities that no line, 
1 line and 2 lines are being used at each of the following times: i) t=2, ii) t=3. 
(Assuming starting time t=0).
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Markov Process
(Example)

Let, 0: No line is in use

1: 1 line is in use

2: 2 lines is in use.

Therefore, state space, S={0, 1, 2}

Given that, the initial probability vector of the states is-
𝑃1×𝐾 = 0.3, 0.5, 0.2

And one-step transition probability matrix is-

𝑃𝐾×𝐾 =
0.2 0.6 0.2
0.3 0.5 0.2
0.1 0.4 0.5
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Markov Process
(Example)

i) For t=2:

𝑃 = 𝑃1×𝐾𝑃𝐾×𝐾 = 0.3, 0.5, 0.2
0.2 0.6 0.2
0.3 0.5 0.2
0.1 0.4 0.5

= 0.23, 0.51, 0.26

i) For t=3:

𝑃 = 𝑃1×𝐾𝑃𝐾×𝐾
2 = 𝑃1×𝐾𝑃𝐾×𝐾𝑃𝐾×𝐾 = 0.23, 0.51, 0.26

0.2 0.6 0.2
0.3 0.5 0.2
0.1 0.4 0.5

= 0.225, 0.497, 0.278

16



Markov Process

 Steady State Probabilities:

If for a irreducible (only one class, so that all states communicate) Markov Chain, all of the 
states are aperiodic and positive recurrent (it will return in a finite time), the distribution

𝐴 𝑛 = 𝐴. 𝑃𝑛

converges as 𝑛 → ∞, and the limiting distribution is independent of the initial probabilities, 
A. In general,

lim
𝑛→∞

𝑝𝑖𝑗
𝑛
= lim

𝑛→∞
𝑎𝑗

𝑛
= 𝑝𝑗
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Markov Process

 Steady State Probabilities:

Furthermore, the values pj are independent of i. These probabilities are called steady state 
probabilities. These steady state probabilities pj satisfy the following state equations-

𝑝𝑗 > 0,………… 1



𝑗=0

𝑚

𝑝𝑗 = 1 ,………… 2

𝑝𝑗 =

𝑖=0

𝑚

𝑝𝑖𝑝𝑖𝑗 , 𝑗 = 0,1,2, … ,𝑚,………… 3

Since there are m+2 equation in (2) & (3), and since there are m+1 unknowns, one of the 
equations is redundant. Therefore we will use m of the m+1 equations in equation (3) with 
equation (2).
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Markov Process
(Example)

Example 3:

Find steady state probabilities for the Markov chain described in example 2.

Here, for steady state,

𝑝0 𝑝1 𝑝2 = 𝑝0 𝑝1 𝑝2
0.2 0.6 0.2
0.3 0.5 0.2
0.1 0.4 0.5

⇒ 𝑝0 𝑝1 𝑝2 = 0.2𝑝0 + 0.3𝑝1 + 0.1𝑝2 0.6𝑝0 + 0.5𝑝1 + 0.4𝑝2 0.2𝑝0 + 0.2𝑝1 + 0.5𝑝2

⇒

𝑝0 = 0.2𝑝0 + 0.3𝑝1 + 0.1𝑝2
𝑝1 = 0.6𝑝0 + 0.5𝑝1 + 0.4𝑝2
𝑝2 = 0.2𝑝0 + 0.2𝑝1 + 0.5𝑝2

Also, 𝑝0 + 𝑝1 + 𝑝2 = 1
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Markov Process
(Example)

Rewriting the above system of equations-

⇒

−0.8𝑝0 + 0.3𝑝1 + 0.1𝑝2 = 0……… 1

0.6𝑝0 − 0.5𝑝1 + 0.4𝑝2 = 0……… 2

0.2𝑝0 + 0.2𝑝1 − 0.5𝑝2 = 0……… 3

𝑝0 + 𝑝1 + 𝑝2 = 1………… 4

Using the equations (1), (2) & (4) we will find the steady state probabilities. First reducing the 
system by eliminating p3.

𝐸𝑞. 1 + −0.1 × 𝐸𝑞. 4 ⇒
−0.8𝑝0 + 0.3𝑝1 + 0.1𝑝2 = 0
−0.1𝑝0 − 0.1𝑝1 − 0.1𝑝2 = −0.1

_____________________________________
−0.9𝑝0 + 0.2𝑝1 = −0.1…… 5
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Markov Process
(Example)

𝐸𝑞. 2 + −0.4 × 𝐸𝑞. 4 ⇒
0.6𝑝0 − 0.5𝑝1 + 0.4𝑝2 = 0
−0.4𝑝0 − 0.4𝑝1 − 0.4𝑝2 = −0.4

_____________________________________
0.2𝑝0 − 0.9𝑝1 = −0.4…… 6

𝐸𝑞. 5 +
2

9
× 𝐸𝑞. 6 ⇒

−0.9𝑝0 + 0.2𝑝1 = −0.1
0.4

9
𝑝0 − 0.2𝑝1 = −

0.8

9_____________________________________

−0.9𝑝0 +
0.4

9
𝑝0 = −0.1 −

0.8

9

⇒ 0.77𝑝0 = 0.11 ⇒ 𝑝0 =
17

77
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Markov Process
(Example)

𝐹𝑟𝑜𝑚 𝐸𝑞. 5 ,
−0.9𝑝0 + 0.2𝑝1 = −0.1

⇒ 𝑝1 = −
1

2
+
9

2
𝑝0 =

38

77

𝐹𝑟𝑜𝑚 𝐸𝑞. 4 ,
𝑝0 + 𝑝1 + 𝑝2 = 1

⇒ 𝑝2 = 1 −
55

77
=
22

77

So, the steady state probabilities for the above stated Markov chain are- 𝑝0 =
17

77
, 𝑝1 =

38

77
,

𝑝2 =
22

77

22


