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Stochastic Process
(Random Process)

A stochastic process {X(t): t € T} is a family of random variables indexed by a
parameter t, which runs over anindex set T.

The parameter t usually denotes time
For any specific time t, X(t) is a random variable.
The index set T is called the parameter set.

If Tis countable, {X(t)}is discrete time stochastic process. If T is an interval,
finite or infinite, {X(t)}is said to be continuous time stochastic process.

The set of possible values of X(t) at any time t is called the state space, S.



Stochastic Process
(Random Process)

Example: Suppose that, a business office has five telephone lines and that any
number of these lines may be in use at any time, the telephone lines are observed
at regular interval of 2 minutes.

X: Number of lines in use in every 2 minutes
Then forT=0,1, 2,3, ...,
X(t): {X(0), X(1), X(2), --- } e.g. X(t):{3,2,50,1,0,3,...}

Here, {X(t): t € T} is a stochastic process with parameter space, T={0, 1, 2, 3, ... }
and State space, S={X: 0,1, 2, 3, 4, 5}



Stochastic Process
(Random Process)

An observation of this process might be one like below-

Number of Busy Lines

9:00 9:02 9:04 9:06 9:08 9:10 9:12 9:14 9:16 9:18 9:20 9:22 9:24 9:26 9:28 9:30 9:32 9:34 9:36 9:38 9:40



Stochastic Process
(Random Process)

Examples of some stochastic processes:
1. Random walk model:
Let, X, is a random variable that can be any of the two states [up (+1) or down (-1)] at time t.

X +1 -1
probability |p 1-p

Then, the processR = R+ X is called arandom walk model
2. Counting process '

A stochastic process {N(t); t > 0} is a counting process if N(t) represents the total number of
events that have occurred in time t.

3. Birth & death process

A stochastic process {N(t); t = 0} with states {n = 0,1,2, ... } for which transition from state n
may go only to either of the states (n-1) or (n+1) is a birth and death process.



Autocorrelation
(serial correlation)

In statistics, the autocorrelation of a random process describes the
correlation between values of the process at different times, as a function

of the two times or of the time lag.

Let X be some repeatable process, and i be some point in time after the
start of that process. Then X. is the value (or realization) produced by a
given run of the process at time i. Suppose that the process is further
known to have defined values for mean y, and variance ¢ for all times i.
Then the definition of the autocorrelation between times s and t is-

R(s,0) = E[(X; — l;t)o-(Xs ) S (X, X.)




Markov Process

Consider a finite or countably infinite set of points (to,, t1, ..., tn, t), where
to<ti<...<tn<tand t,tie T (i= 0,1, 2, ..., n); Tis a parameter space of the
process {x(t)}.

The dependence exhibited by the process {X(t): t € T} is called Markovian

dependence if the conditional distribution of X(t) for a given value of X(t1),
X(t2), ... X(tn) depends only on X(tn), which is the most recent known value of

the process, i.e., if

P[X(t) = x| x(tn) = xp, X(En—1) = X1, ..., X (o) = xO]
= P[X(t) = x| x(ty) = xn]

The stochastic process exhibiting the property (Markov property) is called a
Markov process.



Markov Process

Different types of Markov process

State space

Parameter space Discrete Continuous
Discrete Markov Chain Discrete parameter,
continuous MP
continuous Continuous parameter, Continuous parameter,
discrete MC continuous MP

Notations:

p; = Probability that the process is in state i

pi(}l) = n — step transition probability of state j form state i

= Probability that the process will move from state i to state j inn — steps



Markov Process

Transition Probability Matrix (TPM):

A matrix containing probabilities of transition from one state to another. If there

are k finite states of a Markov process, i.e. S={1, 2, ... k}, then one-step transition
probability matrix-

1 2 ..k
1 [P11 P12 - Prg]
P=2 [Py Py -+ Py
k LPy1 Pro - Pl

Such that, i) P;j = 0,Vi,j € S;ii) X.; P;; = 1 (row total 1)



Markov Process
(Example)

Example 1:
X= Living status. State space, S= {1, 2, 3}; where, 1= Healthy, 2= Sick, 3 = Dead.
1 2 3
p = 1 [P11 P12 Pi3
2 |P21 Pyy Pys
3 LP3; P3; Pss

Fkare,l?ll >’(),FH2 :> 0,[%£;:> 0,}%21 >>(),sz :> O,I%H;:> 0,
P3; =0,P3; =0,P33 =1

P11
T X P2
P31
P13 P1

P32 > P22
P2 ;
33 Q3 P23



Markov Process

Time-homogeneous Markov chains (or stationary Markov chains) are processes
where

P(X¢1q = x| Xe = y] = PIXy = x| X¢—1 = Y]

for all t. The probability of the transition is independent of t.



Markov Process

Classification of states:

Accessible state: A state j is said to be accessible from a state i (written i — j) if

a system started in state i has a non-zero probability (P;; > 0) of transitioning
into state j at some point.

Communicating states: A state i is said to communicate with state j (written i
~|j)ifbothi—jandj—i.

Absorbing state: A stateiis called absorbing if it is impossible to leave this
state. Therefore, the state i is absorbing if and only if p;; = 1 and p;; =
Ofori+j



Markov Process

Classification of states:

Transient state & recurrent state: A state i is said to be transient if, given that
we start in state i, there is a non-zero probability that we will never return to |
(the process may not return to state i). State i is recurrent (or persistent) if it is
not transient. Recurrent states are guaranteed (with probability 1) to have a
finite hitting time.

Periodic state & aperiodic state: A state i has period k if any return to state i
must occur in multiples of k time steps. A state is said to be aperiodic if returns
to state i can occur at irregular times (k=1).



Markov Process
(Example)

Example 2: There are two telephone lines in a office and any number of these
lines may be in use at any given time. During a certain point of time, telephone
lines are observed at regular interval of 2 minutes. The initial probability vector of

the states is-
A].XK - (03, 05, 02)

And one-step transition probability matrix is-

0.2 0.6 0.2
Pywx =103 0.5 0.2
0.1 04 05

Assuming, a homogenous Markov chain, determine that probabilities that no line,
1line and 2 lines are being used at each of the following times: i) t=2, ii) t=3.
(Assuming starting time t=0).



Markov Process
(Example)

Let, 0: No line is in use
1: 1 line is in use
2: 2 lines is in use.

Therefore, state space, S={0, 1, 2}

Given that, the initial probability vector of the states is-
PlXK - (03, 05, 02)

And one-step transition probability matrix is-
0.2 0.6 0.2]

PKxK=[O.3 0.5 0.2
0.1 04 0.5



Markov Process

(Example)
i) For t=2:
0.2 0.6 0.2
P = P,y xPxxx = [0.3,0.5,0.2] [0.3 0.5 0.2]
0.1 04 05
= [0.23,0.51,0.26]
i) For t=3:
02 0.6 0.2
P = Pk Pé«x = PixxPixxPixx = [0.23,0.51,0.26] [0.3 0.5 0.2]
0.1 0.4 0.5

= [0.225,0.497,0.278]



Markov Process

Steady State Probabilities:

If for a irreducible (only one class, so that all states communicate) Markov Chain, all of the

states are aperiodic and positive recurrent (it will return in a finite time), the distribution
A = 4. pn

converges as n — oo, and the limiting distribution is independent of the initial probabilities,

A. In general,

lim p™ = lim a™ = p;

n—ooo' Y n—oo J



Markov Process

Steady State Probabilities:

Furthermore, the values p; are independent of i. These probabilities are called steady state
probabilities. These steady state probabilities p; satisfy the following state equations-

NgE

j=0
m
p] — z plpl] ) ] - 0,1,2, e, M, i e (3)
i=0

Since there are m+2 equation in (2) & (3), and since there are m+1 unknowns, one of the
equations is redundant. Therefore we will use m of the m+1 equations in equation (3) with
equation (2).



Markov Process
(Example)

Example 3:
Find steady state probabilities for the Markov chain described in example 2.

Here, for steady state,
0.2 0.6 O.2>

(Po pP1 P2)= (Po P1 D2) (0.3 0.5 0.2

0.1 04 05
= o P1 P2)=(0.2py+0.3p; +0.1p, 0.6pg+ 0.5p; + 0.4p, 0.2py+ 0.2p1 + 0.5p,)

po = 0.2py + 0.3p; + 0.1p,
p, = 0.2py + 0.2p; + 0.5p,

Also, po +p1 +p, =1



Markov Process

(Example)
Rewriting the above system of equations-
—0.8pg + 0.3p; + 0.1p, =0....... ... (1)
N 0.6pg — 0.5p; + 0.4p, =0 ...... ... (2)
0.2py + 0.2p; — 0.5p, =0 ...... ... (3)
Do+ p1 + D2 = | (4)

Using the equations (1), (2) & (4) we will find the steady state probabilities. First reducing the
system by eliminating p..

Eq.(1) + (—0.1) X Eq.(4) =
—0.1py — 0.1p; — 0.1p, = —0.1

—0.9p, + 0.2p; =—0.1....(5)




Markov Process
(Example)

Eq.(2)+ (—0.4) X Eq.(4) =
0.6p, — 0.5p; + 0.4p, = 0
—0.4py — 0.4p, — 0.4p, = —0.4

Eq.(5) +§>< Eq.(6) =

—0.9p, + 0.2p; = —0.1

04 . __08

0.0n 4 %4 _ 0108
'pO 9p0 - " 9
= 0.77pg = 0.11 = —17

/Py = V. P0—77



Markov Process

(Example)
From Eq. (5),
—0.9py + 0.2p; = —0.1
o 1 N 9 38
P1 = > ZPO ~ 77
From Eq. (4),
pot+p1tp=1
, 55 22
> = _——_—= —
P2 77 77
So, the steady state probabilities for the above stated Markov chain are- p, = %, p1=
22

P2—77

38

77’



