Summarization

F. M. ARIFUR RAHMAN

SENIOR LECTURER, DEPARTMENT OF MATHEMATICAL & PHYSICAL SCIENCES

Contents

- Frequency distribution (for qualitative data) and
- Frequency distribution (for quantitative data)
- Proportion
- Percentage
- Ratio

Distribution of total frequency into possible categories

Example:

Below given occupations of 20 randomly selected men-

Student, Student, Public service, Businessman, Day labor, Public service, Private service, Day labor, Student, Public service, Public service, Private service, Businessman, Day labor, Businessman, Private service, Businessman, Public service, Private service, Public service.

Student, Student, Public service, Businessman, Day labor, Public service, Private service, Day labor, Student, Public service, Public service, Private service, Businessman, Day labor, Businessman, Private service, Businessman, Public service, Private service, Public service. \varDelta

Frequency distribution:

Occupation	Tally	Frequency
Businessman		
Day Labor		
Private service		
Public service		
Student		
Total		

Student, Student, Public service, Businessman, Day labor, Public service, Private service, Day labor, Student, Public service, Public service, Private service, Businessman, Day labor, Businessman, Private service, Businessman, Public service, Private service, Public service.

Frequency distribution:

Occupation	Tally	Frequency
Businessman		4
Day Labor	III	3
Private service	1111	4
Public service	JH1 I	6
Student	III	3
Total		n= 20

Table 1: Frequency distribution table of occupation of the respondent

Occupation	Tally	Frequency	Relative frequency
Businessman		4	4/20= 0.20
Day Labor	III	3	3/20= 0.15
Private service		4	4/20= 0.20
Public service	IN I	6	6/20= 0.30
Student		3	3/20= 0.15
Total		n= 20	1

Class task:

Summarize this data in a frequency table.

Distribution of total frequency into possible numeric classes

Example:

Below given the total monthly income (in thousand taka) of 30 randomly selected families-

30, 40, 6, 110, 11, 15, 55, 20, 120, 45, 30, 47, 52, 68, 105, 62, 52, 98, 76, 85, 83, 91, 49, 38, 57, 27, 23, 42, 9, 65

Steps for finding frequency distributions: Step1: Decide on the number of classes (K), such that, $2^K \ge n$ Here, $(2^5 = 32) \ge (n = 30)$, so K=5

Steps for finding frequency distributions: Step1: Decide on the number of classes (K), such that, $2^K \ge n$ Here, $(2^5 = 32) \ge (n = 30)$, so K=5

Step 2: Determine the class interval (i).

$$i \ge \frac{Highest \ value \ (H) - Lowest \ value \ (L)}{K}$$

Here, $i \ge \frac{H-L}{K} = \frac{120-6}{5} = \frac{114}{5} = 22.8 \approx 23$

Steps for finding frequency distributions:

Step 3: Set the class limits

Classes	Tally marks	Frequency
05-30		
30-55		
55-80		
80-105		
105-130		
Total		

12

Steps for finding frequency distributions:

Step 4: Tally the values into classes and count the number of observations in each class.

Classes	Tally marks	Frequency
05-30	Ш II	7
30-55	Ш Ш	10
55-80	HII	6
80-105		4
105-130		3
Total		n= 30

Table 2: Frequency distribution table of monthly family income

Classes	Tally marks	Frequency	Relative frequency	Percentage
05-30	JH1	7	7/30= 0.23	(7/30)*100= 23
30-55	III III	10	10/30= 0.34	(10/30)*100= 34
55-80	JH1 I	6	6/30 = 0.20	20
80-105		4	4/30 = 0.13	13
105-130	III	3	3/30= 0.10	10
Total		n= 30	1	100

Class task:

Age (in years) of 52 people:

34, 67, 40, 72, 37, 33, 42, 62, 49, 32, 52, 40, 31, 19, 68, 55, 57, 54, 37, 32, 54, 38, 20, 50, 56, 48, 35, 52, 29, 56, 68, 65, 45, 44, 54, 39, 29, 56, 43, 42, 22, 30, 26, 20, 48, 29, 34, 27, 40, 28, 45, 21.

Summarize the data in a frequency table.

More...

Consider a frequency distribution table-

Categories	Frequency
Cat A	f ₁
Cat B	f ₂
Cat C	f ₃
Total	N $(= f_1 + f_2 + f_3)$

Proportion (Relative Frequency): Proportion $=\frac{f_i}{N}$, (i= 1, 2, 3)

Percentage:
$$Percentage = \frac{f_i}{N} \times 100$$
, (i= 1, 2, 3)

More...

Consider a frequency distribution table-

Categories	Frequency
Cat A	f ₁
Cat B	f ₂
Cat C	f ₃
Total	N $(= f_1 + f_2 + f_3)$

Ratio: Ratio =
$$\frac{f_i}{f_j}$$
, $(i, j = 1, 2, 3 \text{ and } i \neq j)$

More...

Table : Frequency distribution table of occupation of the respondent

Occupation	Tally	Frequency	Percentages
Businessman	1111	4	$\frac{4}{20} \times 100 = 20$
Day Labor	III	3	15
Private service	IIII	4	20
Public service	Ш I	6	30
Student	III	3	15
Total		n= 20	100

Ratio of Day labor to Public service is $\frac{15}{30} = \frac{1}{2}$. (can write, 1:2)

Frequency: The number of observations falling into each class

Frequency: The number of observations falling into each class

Class intervals: the frequencies of a particular class is bounded by two values. The width of the class formed by this two values is Class Interval. Example, if a class is (5 to 25), then the interval is i=20 (=25-5)

20

Frequency: The number of observations falling into each class

Class intervals: the frequencies of a particular class is bounded by two values. The width of the class formed by this two values is Class Interval. Example, if a class is (5 to 25), then the interval is i=20 (=25-5)

Class limits: The smallest value of a class is technically known as the lower class limit of that particular class and largest value of that class is known as the upper class limit.

Example, for a class (5 to 25), 5 is the lower class limit and 25 is the upper class limit

21

Class mid-point: The mid-point or mid-value of a class is the value that falls in the middle of the class interval.

 $Midpoint = \frac{Upper \ class \ limit \ (U) + Lower \ class \ limit \ (L)}{2}$

22

Class mid-point: The mid-point or mid-value of a class is the value that falls in the middle of the class interval.

$$Midpoint = \frac{Upper \ class \ limit \ (U) + Lower \ class \ limit \ (L)}{2}$$

Open interval: An open interval is an interval with one of its limits (in either side).

Example, a class like (<30) or (>80) or (75+) are open-ended class intervals