Measure of Central Tendency (Measure of Location)

F. M. ARIFUR RAHMAN

SENIOR LECTURER, DEPARTMENT OF MATHEMATICAL & PHYSICAL SCIENCES

Content

Measure of central tendency

Mean

- Median
- Mode
- Calculation of the measures using raw (ungrouped) and grouped data
- Median like measures- Quartiles, Deciles, Percentiles

- In every data set, the data have the tendency to occur mostly in a central location.
- The measures used to find and describe those locations, are collectively known as measures of central tendency

Daily income of 30 respondents-

50, 100, 500, 1000, 400, 100, 200, 500, 200, 500, 800, 900, 700, 500, 600, 450, 600, 500,, 450, 400, 350, 650, 300, 200, 800, 700, 50, 550, 600, 500

Daily Income

Measure of central tendency provide a very convenient way of describing a set of scores with a single number that describe the performance of the group

It is also defined as a single value that is used to describe the center of the data.

Source: Slideshare.net

6

It is simply the sum of the **numbers divided by the number** of **numbers** in a set of data. This is also known as average.

<u>For example</u>, consider the values-5, 3, 9, 2, 7, 5, 8

It is simply the sum of the **numbers divided by the number** of **numbers** in a set of data. This is also known as average.

<u>For example</u>, consider the values-5, 3, 9, 2, 7, 5, 8

$$Mean = \frac{5+3+9+2+7+5+8}{7}$$
$$= \frac{39}{7} = 5.57 \text{ unit}$$

Mean (Arithmetic Mean)

Formulas:

For raw or ungrouped data-

For Population: let, $X_1, X_2, ..., X_N$ are values of a variable from a population of size N. Then,

For Sample: let, $x_1, x_2, ..., x_n$ are values of a variable from a sample of size n. Then,

Sample mean, $\bar{x} =$ = $\frac{x_1 + x_2 + \dots + x_n}{n} = \frac{\sum_{i=1}^n x_i}{n}$ (Statistic)

Mean (Arithmetic Mean)

Note:

- Mean cannot be calculated for Nominal & Ordinal level of data
- Mean is easily affected by extreme values

• $\sum_i (x_i - \bar{x}) = 0$

Median is the number present in the **middle** when the numbers in a set of data are **arranged in ascending or descending order**. If the number of numbers in a data set is **even**, then the median is the **mean of the two middle numbers**.

<u>For example</u>, consider the values-5, 3, 9, 2, 7, 5, 8

Organizing in **ascending** order, 2, 3, 5, 5, 7, 8, 9

Organizing in **ascending** order, 2, 3, 5, 5, 7, 8, 9 50% 50% observations

Here, n=7 (an odd number) Median = 5

Consider - 3, 5, 5, 7, 8, 9

Consider – 3, 5, 5, 7, 8, 9

Organizing in **ascending** order, **3**, **5**, **5**, **7**, **8**, **9**

50% 50% observations

Consider – 3, 5, 5, 7, 8, 9

Here, n= 6 (an even number)

Organizing in **ascending** order, **3**, **5**, **5**, **7**, **8**, **9**

Modium = 3rd value + 4th value		
<i>Meatan</i> =	2	
_ 5 + 7	12 _ 6	
$=$ $\frac{1}{2}$	$=\frac{1}{2}=0$	

Formulas:

For raw or ungrouped data- (Sample)

Note:

- To find median, data has to be at least in ordinal level of measurement
- Median is not affected by extreme values

Mode is the value that occurs most frequently in a set of data

Notes: Mode can be computed for all levels of data.

<u>For example</u>, consider the values-5, 3, 9, 2, 7, 5, 8

consider the values-

5, 3, 9, 2, 7, 5, 8

consider the values-

Value **5** occurred maximum 2 times

Mode = 5

Formulas:

For raw or ungrouped data-

Find the value occurred most of the times in the data

Weekly income of 6 respondents (in taka)-2500, 3900, 3500, 5000, 4000, 3500

Find Mean, Median and Mode. Interpret the results.

Class task (raw data)

Weekly income of 6 respondents (in taka)-2500, 3900, 3500, 5000, 4000, 3500

 $Mean, \overline{x} = \frac{2500 + 3900 + 3500 + 5000 + 4000 + 3500}{6} = \frac{22400}{6}$ $= 3733.33 \approx 3734 \ taka$

Interpretation: Average weekly income of the respondents is 3734 taka

Weekly income of 6 respondents (in taka)-2500, 3900, 3500, 5000, 4000, 3500 Organizing the values in ascending order-2500, 3500, 3500, 3900, 4000, 5000

$$Median = \frac{1}{2} \left[\left(\frac{n}{2} \right)^{th} value + \left(\frac{n}{2} + 1 \right)^{th} value \right]$$
$$= \frac{1}{2} \left[3^{rd} value + 4^{th} value \right] = \frac{1}{2} \left[3500 + 3900 \right] = 3700 taka$$

Interpretation: 50% of the respondents have weekly income less than or equal to 3700 taka, and 50% of the respondents have weekly income higher than or equal to 3700 taka.

Weekly income of 6 respondents (in taka)-2500, 3900, 3500, 5000, 4000, 3500

Value 3500 occurs highest 2 times in the data. So, **Mode** = 3500

Interpretation: In the data, weekly income 3500 taka is occurred highest number of times.

In graphs-

Mean (Arithmetic Mean)

29

Formulas:

For grouped data- (Population)

X _i	f _i	
X ₁	f ₁	
X ₂	f ₂	
	•••	
X _K	f _K	

let, $X_1, X_2, ..., X_K$ are values of a variable from a population of size N and they occurred $f_1, f_2,$..., f_K times respectively. Then,

Population mean, $\mu = \frac{\sum_{i=1}^{K} f_i X_i}{N}$

Mean (Arithmetic Mean)

Formulas: <u>For grouped data- (</u>Sample)

x _i	f _i
X1	f ₁
x ₂	f ₂
•••	•••
X _k	f _k

let, $\mathbf{x_1}$, $\mathbf{x_2}$, ..., $\mathbf{x_k}$ are values of a variable from a sample of size n and they occurred $\mathbf{f_1}$, $\mathbf{f_2}$, ..., $\mathbf{f_k}$ times respectively. Then,

Sample mean,
$$\bar{x} = \frac{\sum_{i=1}^{k} f_i x_i}{n}$$

Formulas: <u>For grouped data- (Sample)</u>

$$Median = L_m + \frac{\frac{n}{2} - F}{f_m} * c$$

Where,

 L_m = Lower class limit of the median class

n= Total frequency

F= Cumulative frequency of the pre-median class

- f_m = frequency of the median class
- c= class interval

Formulas:

For grouped data-

$$Mode = L_o + \frac{\Delta_1}{\Delta_1 + \Delta_2} * c$$

Where,

 L_{o} = Lower class limit of the modal class

 Δ_1 = Excess of modal frequency over frequency of the next lower class (Pre-modal class) = difference between the frequencies of the modal class and pre-modal class.

 Δ_2 = Excess of modal frequency over frequency of the next higher class (Post-modal class) = difference between the frequencies of the modal class and post-modal class.

c= class interval

Monthly income ('000 tk)	No. of respondents
5-30	7
30-55	10
55-80	6
80-105	4
105-130	3

Find Mean, Median and Mode. Interpret the results.

Monthly income ('000 tk)	No. of respondents (f _i)	Class Midpoint (x _i)	f _i x _i
5-30	7	17.5	122.5
30-55	10	42.5	425
55-80	6	67.5	405
80-105	4	92.5	370
105-130	3	117.5	352.5
Total	30		1675

Mean,
$$\bar{x} = \frac{\sum_{i=1}^{k} f_i x_i}{n} = \frac{1675}{30} = 55.83$$
 (thousand taka)

Monthly income ('000 tk)	No. of respondents (f _i)	Cumulative frequency
5-30	7	7
30-55	10	17
55-80	6	23
80-105	4	27
105-130	3	30
Total	30	

50% of the respondents have monthly family income less than or equal to 50,000 taka and 50% of the respondents have monthly family income higher than or equal to 50,000 taka

 $Median = L_m + \frac{\frac{n}{2} - F}{f_m} * c = 30 + \frac{15 - 7}{10} * 25 = 50 \text{ thousand taka}$

Monthly income ('000 tk)	No. of respondents (f _i)
5-30	7
30-55	10
55-80	6
80-105	4
105-130	3
Total	30

Comparatively a higher number of the respondents have monthly family income around 40,000 taka

Mode = $L_o + \frac{\Delta_1}{\Delta_1 + \Delta_2} * c = 30 + \frac{3}{3+4} * 25 = 40.71$ thousand taka

39

Quartiles:

Quartiles Divides the whole distribution into 4 equal parts

Deciles:

Deciles divide the whole distribution into 10 equal parts

Percentiles:

Percentiles divide the whole distribution into 100 equal parts

Formulas for finding percentiles:

For raw data,

• If
$$\frac{in}{100}$$
 is an integer- (for i= 1, 2, 3, ..., 99)
 $P_i = \frac{1}{2} \left[\left(\frac{in}{100} \right)^{th} value + \left(\frac{in}{100} + 1 \right)^{th} value \right]$

• If
$$\frac{in}{100}$$
 is not an integer-
 $P_i = next \ integer^{th} \ value \ of \frac{in}{100}$

Example:

Weekly income of 6 respondents (in taka)-2500, 3900, 3500, 5000, 4000, 3500 Find Q1, Q2, Q3.

Example:

Organizing in ascending order- 2500, 3500, 3500, 3900, 4000, 5000

So, the quartiles-

 $Q_1 = P_{25} = next integer^{th} value of \frac{25n}{100} = next integer^{th} value of \frac{150}{100}$ = next integerth value of $1.5 = 2^{nd}$ value = 3500

Example: $Q_2 = P_{50} = Median = \frac{1}{2} \left[\left(\frac{n}{2}\right)^{th} value + \left(\frac{n}{2} + 1\right)^{th} value \right] = 3700$

$$Q_3 = P_{75} = next integer^{th} value of \frac{75n}{100} = next integer^{th} value of \frac{450}{100}$$

= next integerth value of $4.5 = 5^{th}$ value = 4000

45

Formulas for finding percentiles:

For grouped data-

$$P_i = L_i + \frac{\frac{in}{100} - F_i}{f_i} * c$$
 i= 1, 2, 3, ..., 99

 L_i = Lower class limit of the ith percentile class

n= Total frequency

 F_i = Cumulative frequency of the ith pre-percentile class

 f_i = frequency of the ith percentile class

c= class interval

Geometric Mean

The geometric mean G of n positive rates x1, x2, ..., xn is defined as the nth positive root of the product of the rates. Symbolically,

$$G = (x_1 x_2 x_3 \dots x_n)^{\frac{1}{n}} - 1$$

Where x_i's are rate of changes.

If x_i's are the value for a given time t, then,

$$G = \sqrt[n]{\frac{x_n}{x_0}} - 1$$

G provides average rates of change.

Geometric Mean

Uses:

• Geometric mean is useful when the data is in geometric progression

Example: At year 2000, the profit was 10000.

Year	Profit
2001	12000
2002	15000
2003	20000
2004	18000
2005	22000
2006	27000

Geometric Mean

Example: At year 2000, the profit was 10000.

Year	Profit	Increase rate	Increased rate (x)
2001	12000	0.20	1.20
2002	15000	0.25	1.25
2003	20000	0.33	1.33
2004	18000	-0.10	0.90
2005	22000	0.22	1.22
2006	27000	0.23	1.23

 $G = (x_1 x_2 x_3 \dots x_n)^{\frac{1}{n}} - 1 = (1.20 * 1.25 * 1.33 * 0.90 * 1.22 * 1.23)^{\frac{1}{6}} - 1$ = 1.18 - 1 = 0.18 = 18% increase per year.

Or,

$$G = \left(\frac{y_{2006}}{y_{2000}}\right)^{\frac{1}{6}} - 1 = \left(\frac{27000}{10000}\right)^{\frac{1}{6}} = 0.18 = 18\% \text{ increase per year}$$

Harmonic Mean

49

Harmonic mean is defined as the reciprocal of the arithmetic mean of the reciprocals of the individual values.

$$H = \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}}$$

For grouped data,

$$H = \frac{\sum f_i}{\frac{f_1}{x_1} + \frac{f_2}{x_2} + \dots + \frac{f_k}{x_k}} = \frac{n}{\frac{f_1}{x_1} + \frac{f_2}{x_2} + \dots + \frac{f_k}{x_k}}$$

Harmonic Mean

Uses:

When dealing with rates, harmonic mean is more appropriate.

Example:

Suppose you are travelling to Narayanganj to Dhaka by car. The distance between Dhaka and Naraynganj is 18km. You drive your car for the first 6km at a speed of 30km per hour and the second 5km at a rate of 40km per hour and the remaining 7 kilometers at a speed of 20km per hour. What is the average speed with which you traveled from Dhaka to Narayanganj?