Measure of variability)

F. M. ARIFUR RAHMAN

SENIOR LECTURER, DEPARTMENT OF MATHEMATICAL & PHYSICAL SCIENCES

Contents

Range

- Variance & Standard deviation (for grouped and ungrouped data)
- Coefficient of Variation (CV)
- Shape characteristics: Skewness & Kurtosis
- **Exploratory data analysis:** Boxplot, Stem & Leaf Plot

Measures of dispersion measure how spread out a set of data is, how much variability there has in the data.

- Statistics deals with data that has some variability
- Measure of location (Central tendency) can not always adequately describe a set of observations or performance of a group of individuals

4

Two data with same mean, can have different variability (i.e. can disperse differently)

Consider two data sets-

Data 1: 30, 40, 60, 80, 90 Data 2: 50, 55, 60, 65, 70

Measure	Data 1	Data 2
Mean	60	60
Range	90-30=60	70-50=20

6

Important and most commonly used measures of dispersion-

1. Absolute Measures

- 1. The Range
- 2. The Mean Deviation (MD) or Average Deviation
- 3. The Interquartile Range (IQR) or Quartile Deviation (QD)
- 4. The Variance
- 5. The Standard Deviation (SD)
- 2. Relative Measure: Coefficient of Variation (CV)

Range

Difference between highest and lowest value.

Range= Highest value (H)- Lowest value (L)

Range

Example:

Below given the weight of 10 newly born babies (in pounds)-7.5, 4.5, 10.1, 9.6, 5.5, 6.6, 7.8, 5.9, 6.0, 5.5

Range

Example:

Below given the weight of 10 newly born babies (in pounds)-7.5, 4.5, 10.1, 9.6, 5.5, 6.6, 7.8, 5.9, 6.0, 5.5

> Range = Highest value - Lowest value= 10.1 - 4.5 = 5.6 pounds

Interpretation: The difference of weights between the healthiest baby and leanest baby is 5.6 pounds

Calculates variability or dispersion from mean.

Variance

Formulas:

For raw or ungrouped data-

For Population: let, X₁, X₂, ..., X_N are values of a variable from a population of size N. Then,

Population variance, $\sigma^2 = Var(X)$

(Parameter)

$$=\frac{\sum_{i=1}^{N}(X_i-\mu)^2}{N}$$

For Sample: let, $x_1, x_2, ..., x_n$ are values of a variable from a sample of size n. Then,

Sample variance,
$$s^2 = var(X)$$

$$=\frac{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}}{n-1}$$

(Statistic)

Lecture Prepared by F. M. Arifur Rahman

Variance

Formulas:

For grouped data-

For Population: let, X₁, X₂, ..., X_K are values of a variable from a population of size N and they occurred f_1, f_2, \dots, f_K times respectively. Then, *Population variance*, $\sigma^2 = Var(X)$ $=\frac{\sum_{i=1}^{K}f_i(X_i-\mu)^2}{N}$ (Parameter)

For Sample: let, $x_1, x_2, ..., x_k$ are values of a variable from a sample of size n and they occurred $f_1, f_2, ..., f_k$ times respectively. Then,

Sample variance, $s^2 = var(X)$

$$=\frac{\sum_{i=1}^{k} f_i (x_i - \bar{x})^2}{n - 1}$$

(Statistic)

Lecture Prepared by F. M. Arifur Rahman

Standard Deviation (SD)

Average variation of the data or observations from mean

14

Can be obtained by taking square root of variance.

Standard Deviation (SD)

Formulas:

For raw or ungrouped data-

For Population: let, X_1 , X_2 , ..., X_N are values of a variable from a population For Sample: let, $x_1, x_2, ..., x_n$ are values of a variable from a sample of size n. Then, of size N. Then, Sample SD, $s = sd(X) = \sqrt{var(X)}$ Population SD, $\sigma = SD(X) = \sqrt{Var(X)}$ $= \sqrt{\left(\frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N}\right) unit}$ $= \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$ unit (Parameter) (Statistic)

Lecture Prepared by F. M. Arifur Rahman

Standard Deviation (SD)

16

Formulas:

For grouped data-

For Population: let, X_1 , X_2 , ..., X_K are values of a variable from a population of size N and they occurred f_1 , f_2 , ..., f_K times respectively. Then,

Population SD, $\sigma = SD(X) = \sqrt{Var(X)}$

$$= \sqrt{\frac{\sum_{i=1}^{K} f_i (X_i - \mu)^2}{N}} unit$$
(Parameter)

For Sample: let, $x_1, x_2, ..., x_k$ are values of a variable from a sample of size n and they occurred $f_1, f_2, ..., f_k$ times respectively. Then,

Sample SD,
$$s = sd(X) = \sqrt{var(X)}$$

$$=\sqrt{\frac{\sum_{i=1}^{k} f_i (x_i - \bar{x})^2}{n-1}}$$
 unit

(Statistic)

Lecture Prepared by F. M. Arifur Rahman

Below given the weight of 10 newly born babies (in pounds)-7.5, 4.5, 10.1, 9.6, 5.5, 6.6, 7.8, 5.9, 6.0, 5.5 Find SD for the above data. Interpret the result.

Below given the weight of 10 newly born babies (in pounds)-

7.5, 4.5, 10.1, 9.6, 5.5, 6.6, 7.8, 5.9, 6.0, 5.5

Find SD for the above data. Interpret the result.

$$mean, \bar{x} = \frac{\sum_{i=1}^{10} x_i}{10} = \frac{7.5 + 4.5 + 10.1 + 9.6 + 5.5 + 6.6 + 7.8 + 5.9 + 6.0 + 5.5}{10} = 6.9$$

$$variance, var(X) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n - 1}$$

$$= \frac{(7.5 - 6.9)^2 + (4.5 - 6.9)^2 + (10.1 - 6.9)^2 + (9.6 - 6.9)^2 + (5.5 - 6.9)^2}{10 - 1}$$

$$= \frac{(.6)^2 + (-2.4)^2 + (3.2)^2 + (2.7)^2 + (-1.4)^2}{9}$$

$$= \frac{(.6)^2 + (-2.4)^2 + (0.9)^2 + (-1)^2 + (-0.9)^2 + (-1.4)^2}{9}$$

$$= \frac{0.36 + 5.76 + 10.24 + 7.29 + 1.96 + 0.09 + 0.81 + 1 + 0.81 + 1.96}{9}$$

$$= \frac{30.28}{9} = 3.36$$

Lecture Prepared by F. M. Arifur Rahman

$sd, s = \sqrt{var(X)} = \sqrt{3.36} = 1.83 \ pounds$

Interpretation: The average variation of the weights of the newly born babies from the mean weight is 1.83 pounds

Consider the following data-

Monthly income ('000 tk)	No. of respondents (f _i)
5-30	7
30-55	10
55-80	6
80-105	4
105-130	3
Total	30

Find SD and interpret the result.

Monthly income ('000 tk)	No. of respondents (f _i)	Class Midpoint (x _i)	$f_i x_i$	$(x_i - \overline{x})$	$f_i(x_i-\overline{x})^2$
5-30	7	17.5	122.5	-38.33	10284.32
30-55	10	42.5	425	-13.33	1776.89
55-80	6	67.5	405	11.67	817.13
80-105	4	92.5	370	36.67	5378.76
105-130	3	117.5	352.5	61.67	11409.57
Total	30		1675		29666.67

$$\bar{x} = \frac{\sum f_i x_i}{n} = \frac{1675}{30} = 55.83 \text{ thousand taka}$$

Monthly income ('000 tk)	No. of respondents (f _i)	Class Midpoint (x _i)	$f_i x_i$	$(x_i - \overline{x})$	$f_i(x_i-\overline{x})^2$
5-30	7	17.5	122.5	-38.33	10284.32
30-55	10	42.5	425	-13.33	1776.89
55-80	6	67.5	405	11.67	817.13
80-105	4	92.5	370	36.67	5378.76
105-130	3	117.5	352.5	61.67	11409.57
Total	30		1675		29666.67

SD,
$$s = \sqrt{\frac{\sum f_i (x_i - \bar{x})^2}{n-1}} = \sqrt{\frac{29666.67}{30-1}} = 31.98$$
 thousand taka

Interpretation: Average variation of the monthly incomes of the respondents from mean income is 31.98 thousand taka

Coefficient of Variation (CV)

24

The coefficient of variation (CV) is defined as the ratio of the standard deviation σ to the mean μ :

Population CV, $C_v = \frac{\sigma}{\mu}$ Sample CV, $c_v = \frac{s}{\bar{x}}$

- It shows the extent of variability in relation to the mean of the population
- The coefficient of variation should be computed only for data measured on a ratio scale
- For comparison between data sets with different units or widely different means, one should use the coefficient of variation instead of the standard deviation

Shape characteristics

Shape of a distribution can be identified by using two characteristics-

- 1. Skewness
- 2. Kurtosis

A measure of the asymmetry (lack of symmetry) of a distribution

Note:

- The normal distribution is symmetric and has a skewness = 0. Here, Mean=Median=Mode
- A distribution with a significant positive skewness has a long right tail and has skewness>0. Here, Mean>Median>Mode
- A distribution with a significant negative skewness has a long left tail and has skewness<0. Here, Mean<Median<Mode</p>

Formulas:

1. Pearson's coefficient of skewness = $\frac{3(mean - median)}{Standard Deviation} = \frac{mean - mode}{Standard Deviation}$

2. Bowley's coefficient of skewness = $\frac{(Q_3 - Q_2) - (Q_2 - Q_1)}{Q_3 - Q_1}$

For a distribution we have-

mean= 30.892, median= 30.58, SD= 2.219, Q_1 = 29.50, Q_3 = 32.1

Is the distribution is positively skewed? How? What is the value of coefficient of skewness?

Skewness

$$Pearson's \ coefficient \ of \ skewness = \frac{3(mean - median)}{Standard \ Deviation} = \frac{3(30.892 - 30.58)}{2.219} = \frac{0.42}{2.219}$$

Bowley's coefficient of skewness =
$$\frac{(Q_3 - Q_2) - (Q_2 - Q_1)}{Q_3 - Q_1}$$
$$= \frac{(32.1 - 30.58) - (30.58 - 29.50)}{32.1 - 29.50}$$
$$= 0.17$$

Yes, the distribution is positively skewed. Because the coefficient of skewness is greater than 0. The value of skewness is 0.42.

Kurtosis

A measure of the extent to which observations cluster around a central point. A provides a measure of peakedness i.e. how peak the distribution is.

Kurtosis

- If kurtosis=0, then Mesokurtic
- If kurtosis>0, then Leptokurtic
- ▶ If kurtosis<0, then Platykurtic.

Kurtosis

Example:

Consider the following data-4, 2, 4, 3, 3, 5, 4, 4, 3, 4, 4, 4, 5, 6, 4

$$Kurtosis = \frac{\frac{\sum(x_i - \bar{x})^4}{n}}{\left(\frac{\sum(x_i - \bar{x})^2}{n}\right)^2} - 3 = 0.32506, which is greater than 0.$$

So, the distribution is leptokurtic.

34

Box & Whisker plot:

Five number summary-

- 1. Lowest value
- 2. Q1
- 3. Median (Q2)
- 4. Q3
- 5. Highest value

Example:

For a distribution, Lowest value= 25, Highest value= 40, Q1= 29.50, Q3= 32.1, and Median= 30.58. Show these information in a boxplot.

Outliers:

 $\label{eq:Interquartile Range, IQR = Q_3 - Q_1} \\ \ Lower fence = Q_1 - 1.5 * IQR \\ \ Upper fence = Q_3 + 1.5 * IQR \\ \ \end{cases}$

37

Any observation having value out of (beyond) these two fences is called outliers and represented by '*' sign on the boxplot. (One * for each outlier)

39

Example:

Show the following data in a stem & leaf plot.

44, 46, 47, 49, 63, 64, 66, 68, 68, 72, 72, 75, 76, 81, 84, 88, 106

Example:

Key: 6 | 3=63

Stem	Leaf					
4	4	6	7	9		
5						
6	3	4	6	8	8	
7	2	2	5	6		
8	1	4	8			
9						
10	6					

Example:

Show the following data in a stem & leaf plot.

4.4, 4.6, 4.7, 4.9, 6.3, 6.4, 6.6, 6.8, 6.8, 7.2, 7.2, 7.5, 7.6, 8.1, 8.4, 8.8, 10.6

Example:

Key: 6|3=6.3

Stem	Leaf					
4	4	6	7	9		
5						
6	3	4	6	8	8	
7	2	2	5	6		
8	1	4	8			
9						
10	6					

42