F. M. Arifur Rahman

Senior Lecturer, Department of Mathematical & Physical Sciences

Content

Simple linear regression

2

- Regression Model
- Analysis procedure
- Goodness of fit
- Prediction
- Interpretations
- Different types of regression

Regression analysis is a technique that studies the cause and effect relationship between two or more variables 3

- Assume or suspect a cause and effect relationship between variables-
 - causal variables as independent variables
 - affected variables as dependent variables
- Regression analysis explains and predicts the changes in the magnitudes of dependent variable(s) in terms of independent variable(s).

Example 1:

- We know that, there is a positive relationship between income and expenditure, i.e. an increase in income increases expenditures.
- As increase in income causes an increase in expenditures, we took in come as independent variable (X) and expenditures as dependent variable (Y).
- And found a fitted regression model- $\hat{Y} = a + bX = 15000 + .78X$

Where, Y= expenditure and X=income

Example 2:

No. of family members, x	Monthly expenditure on food (thousand taka), y
2	5
3	7
6	11
4	8
7	13
3	6

Fit a regression line of **y** on **x**. Interpret the estimates of the parameters. Find the value of R-square. Comment on your result. Estimate that how much monthly expenditure on food would occur if number of family members is 10.

Lecture Prepared by F. M. Arifur Rahman

Regression line

Estimated regression equation, $\hat{y} = a + bx$

Example 2:

No. of family members, X	Monthly expenditure on food (thousand taka), Y		
2	5		
3	7		
6	11		
4	8		
7	13		
3	6		
6	12		

No. of family members, x	Monthly expenditure on food (thousand taka), y	<i>x</i> ²	ху
2	5		
3	7		
6	11		
4	8		
7	13		
3	6		
6	12		

Lecture Prepared by F. M. Arifur Rahman

No. of family members, x	Monthly expenditure on food (thousand taka), y	<i>x</i> ²	ху
2	5	4	10
3	7	9	21
6	11	36	66
4	8	16	32
7	13	49	91
3	6	9	18
6	12	36	72
$\sum x = 31$	$\sum y = 62$	$\sum x^2 = 159$	$\sum xy = 310$

Estimates of the parameters:

$$b = \frac{n\sum xy - \sum x\sum y}{n\sum x^2 - (\sum x)^2} = \frac{7*310 - 31*62}{7*159 - 31^2} = 1.63$$
$$a = \frac{\sum y}{n} - b\frac{\sum x}{n} = \frac{62}{7} - 1.63*\frac{31}{7} = 1.64$$

$$\hat{y} = 1.64 + 1.63 x$$

Lecture Prepared by F. M. Arifur Rahman

Estimated regression line:

 $\hat{y} = 1.64 + 1.63 x$

Interpretation:

a = **1.64** means, monthly expenditure on food (Y) is 1.64 (thousand taka) when no. of family members, i.e. X=0

b= 1.63 means, if number of family members is increased by 1 member (i.e. if 1 member is added), on average, monthly expenditure on food will increase by 1.63 (thousand taka)

x	у	x^2	xy	$\widehat{\mathbf{y}}$
2	5	4	10	=1.64+1.63*2 = 4.9
3	7	9	21	=1.64+1.63*3 = 6.53
6	11	36	66	=1.64+1.63*6 = 11.42
4	8	16	32	8.16
7	13	49	91	13.05
3	6	9	18	6.53
6	12	36	72	11.42
$\sum x = 31$	$\sum y = 62$	$\sum x^2 = 159$	$\sum xy = 310$	

Estimated regression equation, $\hat{y} = 1.64 + 1.63 x$

Lecture Prepared by F. M. Arifur Rahman

Goodness of fit

R-square:

$$n \operatorname{Var}(Y) = \sum (Y_i - \overline{Y})^2 = \sum (\widehat{Y}_i - \overline{Y})^2 + \sum (Y_i - \widehat{Y}_i)^2$$

Or, Total variation = Explained variation + Unexplained variation

Or, Total Sum of Squres (SST) = Regression Sum of Squares (SSR) + Error Sum of Squares (SSE)

$$R^{2} = \frac{Explained Variation}{Total Variation} = \frac{SSR}{SST} = 1 - \frac{SSE}{SST} = 1 - \frac{\sum e_{i}^{2}}{\sum (y_{i} - \overline{y})^{2}} = 1 - \frac{\sum e_{i}^{2}}{\sum y_{i}^{2} - \frac{(\sum y_{i})^{2}}{n}}$$

Goodness of fit

R-square interpretation:

Range: $0 \le R^2 \le 1$ If $R^2 \to 0$: Poor fit i.e. the model is not strong or effective enough If $R^2 \to 1$: Good fit i.e. the model is strong or effective enough

R²% variation in dependent variable (Y) can be explained by the variation in independent variable (X).

x	у	y ²	\widehat{y}	$e_i = (y - \hat{y})$	e_i^2
2	5				
3	7				
6	11				
4	8				
7	13				
3	6				
6	12				

X	У	y ²	$\widehat{oldsymbol{y}}$	$e_i = (y - \hat{y})$	e_i^2
2	5	25	=1.64+1.63*2 = 4.9	=5-4.9=.10	0.01
3	7	49	=1.64+1.63*3 = 6.53	=7-6.53=0.47	.2209
6	11	121	=1.64+1.63*6 = 11.42	=11-11.42=42	0.1764
4	8	64	8.16	-0.16	0.0256
7	13	169	13.05	-0.05	0.0025
3	6	36	6.53	-0.53	0.2809
6	12	144	11.42	0.58	0.3364
$\sum x = 31$	$\sum y = 62$	$\Sigma y^2 = 608$		$\sum e_i = 0$	$\sum e_i^2 =$ 1.05 27

Notice that, $r^2 = R^2$.

Interpretation:

98.21% variation in monthly expenditure on food (Y) can be explained by the variation in no. of family members (X).

That means, the fitted model has a good fit to the data and capable of explaining almost all variation in the dependent variable Y.

Prediction (For example data)

For x= 10 (if number of family members is 10), then the estimated monthly expenditure on food - $\hat{y} = 1.64 + 1.63 * x = 1.64 + 1.63 * 10 = 17.93$ (*thousand taka*)

Simple Linear Regression

Simple Linear Regression Model:

 $Y_i = \alpha + \beta X_i + \epsilon_i \qquad ; \qquad i = 1, 2, \dots, n$

Simple Linear Regression

Simple Linear Regression Model:

 $Y_i = \alpha + \beta X_i + \epsilon_i \qquad ; \qquad i = 1, 2, \dots, n$

Where,

Y= dependent variable

X= independent variable

 α = Intercept

 β = Slope

Regression coefficients (Parameters)

E= Error term (unexplained factor)

Simple Linear Regression

Simple Linear Regression Model: (for sample) $y_i = a + bx_i + e_i$; i = 1, 2, ..., n

Estimated regression line- $E(Y_i|X_i) = \hat{y}_i = a + bx_i$; i = 1, 2, ..., n

$$\therefore e_i = y_i - (a + bx_i) = y_i - \hat{y}_i$$

Estimation of Regression parameters

Least Square Method:

Principle: Determining regression equation i.e. estimating regression parameters such that the sum of squares of the vertical distances between the actual Y values and the predicted Y values i.e. sum of squares of errors ($\sum_i \epsilon_i^2$) is minimized.

24

Estimation of Regression parameters

Least Square Estimates (LSE) of the parameters:

Let \boldsymbol{a} and \boldsymbol{b} are the least square estimates of $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ respectively, then-

26

$$\widehat{\boldsymbol{\beta}} = b = \frac{cov(X,Y)}{v(X)} = \frac{\sum(x_i - \bar{x})(y_i - \bar{y})}{\sum(x_i - \bar{x})^2} = \frac{n\sum xy - \sum x\sum y}{n\sum x^2 - (\sum x)^2}$$

And
$$\widehat{\alpha} = a = \overline{y} - b\overline{x} = \frac{\Sigma y}{n} - b\frac{\Sigma x}{n}$$

Lecture Prepared by F. M. Arifur Rahman

Interpretation of estimated parameters

a (intercept): when x=0, the baseline value of y is *a* units

b (Slope): For 1 unit increase in x, the average or expected increase (if, b>0) or decrease (if, b<0) in y is **b** units.

27

Assumptions of Regression

Assumptions of Simple Linear Regression Model:

- 1. X values are fixed
- 2. The relationship between X and Y is linear
- 3. $\epsilon_i \sim N(o, \sigma^2)$, i.e. error terms follows normal distribution with mean o and variance σ^2 .

28

4. X and \in are uncorrelated, i.e. $Corr(X, \epsilon) = r_{X\epsilon} = 0$

Assumptions of Regression

Response variable Y the true relationship an observation

Predictor variable X

Goodness of fit

Goodness of fit

Steps of regression

Hypothesize a Model of Relationship

Estimation of Regression Equation

Goodness of fit test of the Model

Prediction

Uses of regression

Uses:

- 1. Estimate the relationship that exists, on average, between the dependent variable and the independent (explanatory) variable.
- 2. Determine the effect of each of the explanatory variables on the dependent variable, controlling the effects of all other explanatory variables, if any.
- 3. Predict the value of the dependent variable for a given or known value of the explanatory variable

Lecture Prepared by F. M. Arifur Rahman

34